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Abstract

In the rapidly advancing domain of digital 3D content creation, the demand for efficient and
sophisticated generation tools is increasingly crucial. This paper presents an innovative solution to
augment 3D character generation by seamlessly integrating ControlNet and Low-Rank Adaptation
(LoRA) into pre-existing text-to-image diffusion models. Traditional systems often grapple with
issues such as lack of spatial consistency and the occurrence of multi-headed artifacts due to poor
quality in multi-view image synthesis.

Our approach leverages ControlNet for refined pose control and adapts 3D Gaussian Splatting
for effective spatial optimization and pruning. In addition, we utilize LoRA for the fine-tuning
of pre-trained text-to-3D models, facilitating the creation of personalized and high-fidelity 3D
characters that meet specific user requirements. A notable enhancement in our methodology is
the application of Noise-Free Score Distillation (NFSD), which significantly elevates model perfor-
mance at reduced CFG scales. This strategy enables the production of detailed, high-resolution
3D avatars from textual descriptions, while assuring feature consistency across diverse views.

To validate the effectiveness of our proposed method, we carried out comprehensive ablation
studies and user evaluations. These assessments involved comparing our approach with existing
baselines to showcase its superiority in generating photo-realistic 3D models that accurately re-
flect user inputs. Our research represents a significant advancement in AI-assisted 3D character
generation, opening new avenues in industries such as gaming, animation, and virtual reality. It
contributes a notable innovation to the burgeoning field of text-to-3D transformation.

1 Introduction

1.1 Background

The evolution of digital content creation, particularly in the 3D domain, is pivotal for industries like
gaming, advertising, films, and the burgeoning MetaVerse. Traditionally, creating intricate 3D models
has been both time-consuming and resource-intensive, demanding thousands of hours of work from
skilled artists. This scenario underscores the need for innovative approaches that reduce manual labor
while enabling both professionals and amateurs to produce 3D assets efficiently.

Recent breakthroughs in 2D content generation (Rombach et al., 2022) have sparked significant ad-
vancements in 3D content creation. These advancements can be broadly categorized into two streams:
inference-only 3D native methods and optimization-based 2D lifting methods. While 3D native meth-
ods (e.g., Jun Nichol, 2023; Nichol et al., 2022; Gupta et al., 2023) show promise in swiftly generating
3D-consistent assets, they are hindered by the need for extensive 3D dataset training, which is labor-
intensive and often lacks diversity and realism (Deitke et al., 2023b; a; Wu et al., 2023).

One notable method, Dreamfusion (Poole et al., 2022), uses Score Distillation Sampling (SDS) to
circumvent the 3D data scarcity, inspiring the development of 2D lifting methods (Lin et al., 2023;
Wang et al., 2023b; Chen et al., 2023b). Despite progress, these methods suffer from long optimization
times due to the computationally intensive Neural Radiance Fields (NeRF) (Mildenhall et al., 2020),
rendering them impractical for large-scale deployment. Furthermore, existing methods to accelerate
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NeRF, such as occupancy pruning (Muller et al., 2022; Sara Fridovich-Keil and Alex Yu et al., 2022),
are less effective in generative settings, especially when supervised by the ambiguous SDS loss.

1.2 Objectives

In response to these challenges, we propose a novel approach to personalize text-to-3D diffusion models
for user-specific 3D generation needs. Our method aims to enrich the model’s language-vision dictio-
nary, allowing it to associate new words with specific subjects as defined by the user. This embedded
dictionary enables the model to generate photo-realistic 3D models of subjects in various scenes and
conditions, maintaining their distinctive features

We leverage ControlNet, an architecture that introduces spatially localized input conditions to pre-
trained text-to-image diffusion models. This integration allows for precise pose control in the generated
3D models. Additionally, we fine-tune the text-to-3D model with input images and text prompts that
combine a unique identifier with the subject’s class name (e.g., ”A Darth Vader [V]”). This approach
enables the model to apply its pre-existing knowledge of the subject class, tailored by the specific
instance linked with the unique identifier.

We adapt 3D Gaussian Splatting (Kerbl et al., 2023) for generative settings. This approach,
in contrast to NeRF-based methods, efficiently prunes empty space and simplifies the optimization
landscape. The progressive densification of Gaussian splatting aligns with the generative settings’
optimization progress, enhancing generation efficiency.

1.3 Significance

Our approach opens avenues for a variety of text-based 3D generation applications, including subject
recontextualization, property modification, original art renditions, and more. To demonstrate the
efficacy and versatility of our method, we conduct ablation studies, comparing our approach with
alternative baselines and related work. Our method outperforms existing approaches in both quality
and visual appeal. Additionally, we carry out a user study to evaluate the fidelity of subjects and
prompts in our synthesized images, positioning our method as a significant advancement in the field
of 3D content creation.

2 Related Work

2.1 Fine-Tuning Neural Networks

Fine-tuning neural networks is a pivotal process in adapting pretrained models to specific tasks. Tradi-
tional fine-tuning methods, which involve additional training with new data, often confront challenges
such as overfitting, mode collapse, and catastrophic forgetting. To circumvent these issues, adapter
methods have been introduced, particularly in NLP, for customizing pretrained transformer models.
These adapters, embedded as new module layers, have shown promising results in various domains,
including computer vision for tasks like incremental learning and domain adaptation.

Adapter variants, such as those designed by Houlsby et al. (2019) and Lin et al. (2020), offer differ-
ent configurations in the Transformer blocks, balancing between efficiency and performance. Despite
their compact design, adapters introduce additional computational load, especially in scenarios lacking
model parallelism. This computational overhead becomes significant in online inference settings with
small batch sizes. Our work integrates Low-Rank Adaptation (LoRA), which innovatively addresses
the issue of catastrophic forgetting and computational efficiency by learning parameter offsets with
low rank matrices.

2.2 3D Representations

Neural Radiance Fields (NeRF) [1] employs a volumetric rendering and has been popular for enabling
3D optimization with only 2D supervision. Although NeRF has become widely used in both 3D
reconstruction [2][3][4][5][6][7][8], optimizing NeRF can be time-consuming. Various attempts have
been made to accelerate the training of NeRF [11][12], but these works only focus on the reconstruction
setting. The common technique of spatial pruning fails to accelerate the generation setting. Recently,
3D Gaussian splatting [9] has been proposed as an alternative 3D representation to NeRF, which
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has demonstrated impressive quality and speed in 3D reconstruction [10]. The efficient differentiable
rendering implementation and model design enables fast training without relying on spatial pruning.
In this work, we for the first time adapt 3D Gaussian splatting into generation tasks to release the
potential of optimization-based methods.

2.3 Text-To-2D Generation

The evolution of image diffusion models, originating from Sohl-Dickstein et al., has revolutionized
image generation. Latent Diffusion Models (LDM) stand out by performing diffusion in the latent
space, thus reducing computational demands. Text-to-image models like Glide and Stable Diffusion
harness pretrained language models (e.g., CLIP) to encode textual inputs into latent vectors, achieving
remarkable image generation results. Our work builds on these advancements, tailoring them for 3D
character generation.

2.4 Text-To-3D Generation

The objective of Text-to-3D generation is to create three-dimensional assets based on text prompts.
Recent advancements in 2D diffusion models have significantly impacted text-to-image generation.
Yet, adapting these models for 3D generation presents substantial challenges, notably in assembling
extensive 3D datasets. Traditional 3D diffusion models are typically restricted to a single object
category, leading to a lack of variety. To facilitate the creation of diverse 3D content, several techniques
have been developed to adapt 2D image models for 3D generation. These approaches involve fine-
tuning a 3D model to align with the probabilities of pretrained 2D diffusion models when viewed from
various angles, ensuring both three-dimensional consistency and realism. Subsequent research has
focused on improving aspects like the fidelity of generation and the stability of training. Nonetheless,
these methods based on 2D model adaptation often face lengthy optimization times for each case.
Specifically, using Neural Radiance Fields (NeRF) for 3D representation results in high computational
costs in both the rendering passes. In this study, we opt for 3D Gaussians as our differentiable 3D
representation, demonstrating through empirical evidence its more streamlined optimization process.

2.5 Text-to-3D Character Generation

Adapting 2D diffusion models for 3D generation involves significant challenges, primarily due to the
complexity of assembling comprehensive 3D datasets and ensuring multi-view consistency. Traditional
3D models, often limited to singular object categories, lack diversity. To address this, our method
fine-tunes a 3D model to align with the probabilities of pretrained 2D diffusion models from various
perspectives, ensuring both three-dimensional consistency and realism. This approach significantly
improves upon the fidelity and stability of traditional 3D generation methods.

Initiatives like Avatar-CLIP have explored the realm of 3D avatar generation, employing CLIP for
shape sculpting and texture generation. However, these methods often result in oversimplified models.
In contrast, DreamAvatar and AvatarCraft represent concurrent advancements in the field. While
DreamAvatar generates static posed avatars, AvatarCraft excels in producing high-quality, animatable
avatars through a combination of coarse-to-fine training and multi-box techniques, utilizing SMPL
models for shape prior and local transformations.

3 Methods

3.1 Architecture

3.1.1 Overview

The architecture of our proposed system integrates three cutting-edge technologies: Stable Diffusion,
ControlNet, and LoRA (Low-Rank Adaptation). This integration aims to generate high-resolution,
detailed 3D avatars from textual descriptions. The process involves fine-tuning the Stable Diffusion
model using LoRA for personalized character generation, employing ControlNet for ensuring multi-
view consistency, and leveraging DreamGaussian for 3D model generation. Our whole pipeline is shown
in 1.
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Figure 1: Our Two-Stage Training Methodology

3.1.2 Stable Diffusion Fine-Tuned with LoRA

Stable Diffusion serves as the backbone of our architecture, renowned for its capability to generate
detailed images from textual inputs. To tailor this model for personalized avatar creation, we employ
LoRA, a fine-tuning technique that adjusts only a small fraction of the model’s parameters. This
approach enables the model to maintain its general capabilities while becoming specialized in generating
specific character features as described in the input text. LoRA’s low-rank matrix adaptation ensures
that the personalization is efficient and does not require extensive retraining of the model.

3.1.3 ControlNet for Multi-View Consistency

ControlNet is integrated into the pipeline to address the challenge of multi-view consistency in image
generation. This module ensures that the generated images of the character from various angles are
consistent in terms of appearance and pose. More specifically, we use FrankMocap to estimate 3D
body poses and mesh from real images. These are then used to render 2D poses in randomly sampled
viewpoints along with the depth map as illustrated in 2. Afterward, we send the projected pose
and depth map to Multi-ControlNet. This guides the Stable Diffusion output to preserve feature
consistency across various views, ensuring more accurate and consistent rendering of the images. This
method effectively facilitates the creation of images that cohere when compiled into a 3D model.

3.1.4 Generative Gaussian Splatting

The final step in the pipeline is the transformation of the multi-view images into a 3D model. For
this, we utilize DreamGaussian, an algorithm capable of synthesizing these images into a cohesive
3D avatar. DreamGaussian works by interpreting the spatial relations and depth cues from the set
of images, thereby constructing a high-resolution, detailed 3D model that faithfully represents the
character described in the input text.
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Figure 2: Projected pose and depth map in front view

3.2 3D Representations

The foundation of our method lies in representing 3D information through a set of 3D Gaussians,
as proposed by Kerbl et al. (2023). Each Gaussian is defined by its center (x ∈ R

3), scaling factor
(s ∈ R

3), rotation quaternion (q ∈ R
4), opacity value (α ∈ R), and color feature (c ∈ R

3). Collectively,
these parameters are denoted as Θ, where Θi = {xi, si,qi, αi, ci} represents the parameters of the i-th
Gaussian. Our rendering process projects these 3D Gaussians onto a 2D plane, facilitating volumetric
rendering in a front-to-back depth order.

3.3 Text-to-3D Generation

The core of our optimization process involves Score Distillation Sampling (SDS), a technique that
minimizes the KL divergence between Gaussian distributions and the learned score functions of a pre-
trained diffusion model. We initialize the 3D Gaussians with random positions and periodically densify
them, aligning with the generation progress. The SDS optimizes these 3D Gaussians by sampling
random camera poses and rendering the RGB and transparency of the current view. This process is
guided by different 2D diffusion priors (ϕ), which is back-propagated to optimize the 3D Gaussians.

In our text-to-3D task, a single text prompt is inputted and converted into CLIP embeddings (e).
The SDS loss is formulated as:

∇ΘLSDS = Et,p,ϵ

[

(ϵϕ (I
p
RGB; t, e)− ϵ)

∂I
p
RGB

∂Θ

]

This loss function effectively guides the optimization of the 3D Gaussians towards generating a 3D
representation that is coherent with the textual description.

3.4 Noise-Free Score Distillation

First, consider the difference δC = εϕ(Zt; y, t)−εϕ(Zt;X , t) in SDS loss. While εϕ(Zt; y, t) ideally points
towards a local maximum in the probability density of noisy real images conditioned on y, εϕ(Zt;X , t)
points towards a denser region in the distribution of unconditioned noisy images. Thus, the difference
δC between the two predictions may be thought of as the direction that steers the generated image
towards alignment with the condition y, and we henceforth refer to it as the condition direction.

NFSD [?] focuses on isolating the distortion-related component (δD) from the predicted noise in the
diffusion process. We distinguish between smaller (t < 200) and larger (t ≥ 200) timestep values. For
smaller timesteps, the noise component (δN) is negligible, and the score primarily consists of δD which
is just original SDS. For larger timesteps, we approximate δD as the difference between the predicted
noise under null-condition and a negative-condition prompt (described as ”unrealistic, blurry, low
quality,” etc.).

We can reform the original SDS loss as:

∇θLSDS = w(t)(εϕ(Zt; y, t)− ϵ)
∂χ

∂θ
= w(t)(δD + δN + sδC − ϵ)

∂χ

∂θ
. (1)
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Figure 3: Ours LoRA v.s. Stable Diffusion (back view)

After introducing the assumption that δC = pneg ≈ −δD, and thus εϕ(Zt;X , t)−εϕ(Zt; y) = pneg =
δD + δN − (δD + δN + δC = pneg) ≈ δD. The NFSD loss is formulated as:

∇θLNFSD = w(t) (δD + sδC)
∂x

∂θ

This loss function enables the efficient optimization of the 3D Gaussians, leading to improved image
and NeRF quality without the need for a large scaling factor s, as in SDS.

4 Experiments and Analysis

4.1 Implementation Details

4.1.1 Base Model and Training Approach:

Our project utilized Stable Diffusion version 1.5 as the foundational model for generating 3D character
models. To enhance its capabilities, we applied LoRA (Low-Rank Adaptation) training, which resulted
in the development of two distinct versions of the tuned model, each optimized for different aspects of
character generation.

Darth Vader: First Version - Initial Approach:

• Data Collection: The initial dataset comprised 45 images of Darth Vader, incorporating sources
from the internet, films, and images generated from 3D models.

• Automated Labeling: We employed a pretrained ConvNext model to automate the labeling pro-
cess for these images.

• Training Duration and Observations: The training spanned across 10 epochs. We set the LoRA
rank=32 and learning rate=1e-4 with AdamW optimizer. This version successfully captured key
character features but exhibited limitations in accurately rendering the character’s back. 3

Darth Vader: Second Version - Enhanced Refinement:

• Dataset Optimization: We expanded the dataset to 65 images, rigorously filtering out low-quality
and blurry images from the initial collection. This revision also included a greater variety of
images, particularly focusing on the character’s side and back views.

• Manual Labeling for 3D Preparation: Each image was meticulously labeled with ’front’, ’side’,
and ’back’ view tags to aid in accurate 3D content generation.

• Training Duration and Observations: The training spanned across 20 epochs. We set the LoRA
rank=64 and learning rate=1e-4 with AdamW optimizer. This revised model demonstrated
superior adherence to specified viewing angles and significantly improved the accuracy of detail
representation, especially on the character’s back in 2D image tests.

Iron Man

• We also trained an iron man model in the same method as the second version of Darth Vader.
The only difference is that for the character of Iron Man, we used only 36 images, with just 3 to
4 images taken from the side view. It indeed leads to some problems in our experiments. Yet,
judging from the results, the performance of this model was still impressively satisfactory.
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Figure 4: 3D generation process with training step: 500, 1500, 3000, 5500.

4.1.2 Optimizing LoRA Weights and Model Evaluation

The optimization of LoRA weights proved crucial in balancing detail reproduction and command
adherence. The optimal performance was achieved with a LoRA weight setting of 0.7. To assess the
quality of our models, both versions were evaluated using FID (Fréchet Inception Distance) and CLIP
scores. These assessments were conducted at various epochs to track the progress and quality of the
models, providing valuable insights into their performance over time.

4.1.3 ControlNet 3D Generation Guidance

An integral part of our 3D character generation process involved the innovative use of ControlNet,
specifically tailored for guiding the generation of 3D characters in various poses. We began by gener-
ating 3d openpose from 2d images and storing a comprehensive library of 3D keypoints representing
multiple human body postures. During the training phase, these keypoints were projected onto the
current camera view to create OpenPose posture models. This projection was instrumental in accu-
rately capturing the dynamics of human posture from various angles. We also render depth map from
SMPL (a Skinned Multi-Person Linear Model) corresponding to the 3D Openpose, to enhance the
correctness of our ControlNet.

To infuse the posture information into the generation process, we utilized a pretrained OpenPose
ControlNet and a pretrained Depth ControlNet. The ControlNets were adept at injecting the current
viewpoint’s posture information into the U-Net architecture, a crucial step in our workflow. By em-
ploying this method, we were able to guide the generation of 3D characters in specific actions, tailoring
each character to our desired pose and orientation.

A significant advantage of this approach was its effectiveness in preventing the issue of multi-
heads or repeated features – a common challenge in 3D generative models. The targeted injection of
posture data ensured that the generated characters remained coherent and true to the intended pose,
contributing greatly to the realism and accuracy of our 3D models.

4.1.4 Final 3D Content Generation Process

In the final phase of our project, we integrated the trained LoRA and SD models for comprehensive
3D content generation. This integration was crucial in realizing our project’s objectives. A key feature
of our approach was the dynamic adjustment of prompts in the generation process, similar to the
technique used in DreamFusion. These prompts were adjusted according to the horizontal angle of
view, ensuring that the generated content was aligned with the intended perspective.

Additionally, we implemented Noise-Free Score Distillation (NFSD) to enhance our models’ per-
formance. Unlike the standard SDS loss, which required a CFG scale over 50 and often led to over-
saturation, NFSD maintained effective performance at a CFG scale of just 7.5. This advancement
significantly improved the quality of our models.

Each model underwent a rigorous training process, consisting of 5500 iterations on an Nvidia 3070
GPU. The first 3500 iterations included a densification of Gaussian every 350 iterations.The generation
processes are shown in 4.

To further enhance the level of detail in the models, we employed a stepwise rendering process. The
initial 30% of steps utilized a resolution of 128x128, followed by 30% at 256x256, and the final 40% at
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a higher resolution of 512x512. This stepwise increase in resolution allowed for a gradual build-up of
details, resulting in models with a higher degree of finesse and realism.

4.2 Prior Analysis

In this part, we will try different combination for our controlnet, including baseline(no controlnet),
openpose controlnet, depth controlnet and openpose&depth multicontrolnet, we will conduct experi-
ment on those combinations and analyze their performance in generating 3D models.
Note: For Iron Man, our prompt remained ”Mark 42, Iron Man, full body, masterpiece.” For Darth
Vader, our prompt was kept as ”1boy, full body, Darth Vader, 3D asset, 4K, ultra quality, realistic.”
These are obtained from our 2D Stable Diffusion tests.

4.2.1 Baseline (Stable Diffusion + LoRA)

In our initial approach, we trained a baseline model utilizing Stable Diffusion and LoRA, devoid of
any active control net intervention. The outcome, as illustrated in Figure 5, distinctly reveals that in
the absence of a control net, the model struggles to produce a 3D model with an accurate pose. While
the model is capable of generating a 3D model with the correct shape, the resulting figures appear
blurry and indistinct.

Notably, when tasked with generating Iron Man, the model produced a 3D model that exceeded
the image boundaries even when we stressed the prompt ”full body”, an outcome that is considered
unacceptable for our purposes.

4.2.2 OpenPose ControlNet Only

For our second model, we utilized Stable Diffusion and LoRA, incorporating OpenPose as a guiding
prior for the generation process. The methodology for integrating the OpenPose prior through the
ControlNet has been detailed in the preceding section. Observations from Figure 6 demonstrate that
the implementation of the ControlNet is indeed crucial; the model successfully generates a 3D model
with an accurate pose. However, despite the correct pose, the model appears noticeably bulkier than
anticipated. This discrepancy may stem from an imbalanced distribution of side-view images of the
3D model within our dataset.

Additionally, we noted that during the training phase, the Gaussian splatting balls tended to
increase in size and solidity as the training progressed. This phenomenon is likely a contributing factor
to the ”bulkiness” observed in the generated 3D model.

To address this issue, we introduced a depth prior into the model. It is our expectation that this
addition will help constrain the model, enabling it to generate a 3D model that avoids the ”bulkiness”
problem.

4.2.3 Depth ControlNet Only

Now we tried to use ControlNet on the model with only depth prior, instead of using the OpenPose
image. From the result shown in Figure 7(a), it is evident that using depth alone to train the model
leads to some undesirable outcomes. Notably, some parts of the hands and legs appear to be trans-
parent, indicating a significant loss of detail in these areas. This results in a model that looks rather
unsatisfactory. The depth prior seems unable to fully capture the complexity of the human body,
leading to these inaccuracies.

4.2.4 OpenPose + Depth ControlNets

When we combined both OpenPose and Depth Prior, the results were quite promising. As seen in
Figure 7(b), the model was able to generate a 3D model with the correct pose and shape. While there
was a slight blur compared to the model with only the OpenPose prior, it was minimal and could
potentially be reduced with further training and refinement.

Interestingly, the combined use of OpenPose and Depth Prior seemed to balance each other’s
limitations. The model was not excessively bulky, as was the case with the OpenPose prior alone, nor
did it produce incorrect poses, as was observed with the Depth Prior alone. This suggests that the
combination of these two priors effectively harnessed their strengths while mitigating their weaknesses.
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Figure 5: Baseline Model - The first three images on the left depict results without the use of LoRA,
while the fourth image demonstrates the outcome when LoRA is enabled.

Figure 6: OpenPose ControlNet

We attempted to directly incorporate depth images as a part of the loss function, but this approach
disrupted the model’s clothing, particularly the cloaks. Using a depth Controlnet with lower control
strength did not cause this disruption and was able to assist in the correct generation of character
hands to some extent. However, we found that it was necessary to periodically reset the transparency
of the Gaussian spheres to better adhere to the depth directives. This requirement led to the need for
longer iteration steps for the model to materialize effectively.

In conclusion, the combination of OpenPose and Depth Prior showed great potential for generating
high-quality 3D models. With further refinement and exploration of new strategies, we believe that
we can achieve even better results in future work.

4.2.5 Summary

In our recent experiment, we focused on enhancing the quality of 3D models generated by our model,
which integrates Stable Diffusion and LoRA techniques. We specifically investigated the impact of
various priors, including OpenPose and depth prior, on the model’s generative process.

Our initial observations with the baseline model, which operated without the application of any
control net, revealed some limitations. This model predominantly produced 3D models with inaccura-
cies in pose, leading to blurry and indistinct outputs. The integration of the OpenPose prior marked a
significant improvement, particularly in the accuracy of poses. However, this enhancement came with
an unexpected consequence—the models tended to exhibit an increased bulkiness.

To address this issue, we introduced a depth prior. When utilized independently, the depth prior
did not yield the desired outcomes; the model particularly struggled with accurately generating leg
poses. However, a notable improvement was observed when both the OpenPose and depth priors were
applied in tandem. This combination enabled the generation of 3D models with both accurate poses
and appropriate shapes.

Despite this success, a slight drawback was noted—the models appeared somewhat blurry and less
defined compared to those generated using only the OpenPose prior. We hypothesize that with further
training, these issues could be mitigated. However, due to the constraints imposed by our current
hardware setup, specifically a single RTX 3070 GPU, our experimentation was limited in this regard.
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((a)) Depth ControlNet ((b)) Depth and OpenPose MultiControlNet

Figure 7: Comparison of Depth ControlNet and Depth and OpenPose MultiControlNet

Figure 8: Training Loss by Step (Darth
Vader: orange for version 1 and red for
version 2)

Figure 9: Training Loss by Epoch (Darth
Vader: orange for version 1 and red for
version 2)

Figure 10: Training Loss by Step (Iron Man)

4.3 Training and Validation

Training loss are shown in 8 9 10. Notably, the training process of the Lora model is not monotonically
decreasing, but overall, it shows a downward trend. There is also a certain correlation between the
model’s loss, CLIP score, and FID. Models with lower loss are better at generating scenes semantically
related to the characters, demonstrating higher compatibility and image quality.

Figure 11 displays the changes in NFSD loss during the generation of 3D models. Since all the
training losses looks almost the same, we are not visualizing all the losses. During the generation
process, the loss initially increases and then decreases. We believe that the loss in the first half is
mainly dominated by the weight wt, where the training primarily focuses on the shape generation
of the 3D model, and the residual term of the diffusion model is not significant. In the second half,
the residual term of the diffusion model becomes dominant. During this phase, the 3D model refines
details in the direction guided by the prompt, and the loss gradually decreases.

4.4 Parameter Analysis

In image synthesis, the Fréchet Inception Distance (FID) and the CLIP scores are two critical metrics.
For our models at different stages, we generated images using prompts identical to those in the training
dataset and assessed the FID and CLIP scores to gauge their quality and semantic alignment. The
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Figure 11: Examples of NFSD loss

Training Epoch FID Score (↓) CLIP Score (↑)

w/o LoRA 164.81 32.59
v1-8 140.00 32.27

v1-final 145.22 32.32
v2-16 139.74 32.10
v2-18 146.24 32.01
v2-final 139.37 32.40

Table 1: Evolution of FID and CLIP Scores during Training

significant decrease in the FID score, coupled with the nearly consistent CLIP score suggests that
our model has improved the consistency in generating images corresponding to specific prompts and
designated characters, without substantially compromising the congruence between text and images.

5 Discussion

5.1 Interpretation of Results

The results from our experiments demonstrate significant advancements in 3D character generation
using ControlNet, LoRA, and text-to-image diffusion models. Our approach efficiently addresses the
challenges of spatial consistency and multi-view artifact reduction. The integration of ControlNet
and LoRA with the Stable Diffusion model has enabled the creation of high-fidelity 3D characters
with detailed feature consistency across different views, as evidenced by the improved FID and CLIP
scores. The effectiveness of Noise-Free Score Distillation in enhancing model performance at reduced
CFG scales is particularly notable, showcasing our methodology’s ability to produce detailed, high-
resolution 3D avatars from textual descriptions with greater efficiency.

5.2 Challenges and Limitations

In the course of our experiment, we encountered numerous challenges. Firstly, our 3D content genera-
tion process required nearly half an hour, and LoRA necessitated a high-quality training set to achieve
satisfactory results. Additionally, we found that the hyperparameter conditions of Gaussian Splatting
significantly influenced the final 3D content generation. We attempted to render multiple viewpoints
in a single diffusion to further increase consistency, but this was not successful due to limitations in
VRAM.

Additionally, for the specific character of Darth Vader, it’s likely due to his cloak obscuring the
body, we could only make him perform some simple movements. The model couldn’t understand
the positional relationship between his body and the cloak. Also, the presence of the cloak made it
impossible to use depth priors. Although putting depth priors into ControlNet provides good results.

5.3 Future Directions

Drawing inspiration from VSD, we have the potential to enhance our LoRA model’s capability to
more accurately represent the features of 3D characters. We employed PyRenderer to generate SMPL
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depth maps, but found the process to be exceedingly slow, which substantially impeded the training
speed. In future developments, leveraging CUDA programming could offer a solution to this bottleneck.
Moreover, should additional VRAM become available, it would be prudent to consider rendering from
multiple viewpoints concurrently. This approach could significantly improve the model’s consistency.
Additionally, we could further exploit the SMPL prior by initializing Gaussian Spheres on the model.

6 Extra

6.1 Github Repo

https://github.com/KevinXu02/ControlledDreamGaussian

6.2 Gallery

Figure 12: 2D images from our LoRA

Figure 13: 3D Model Failures
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Figure 14: 3D Models
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